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Abstract
We propose an improved parametric form for the equation of state of three-
dimensional O(N) spin systems. The proposed form is a series expansion with
two sets of terms, which contribute (mainly) separately to the description of
the high- and low-temperature regions of the phase diagram. Our goal is a
better description of the low-temperature phase at zero magnetic field (i.e. the
coexistence line), characterized by singularities induced by Goldstone modes.
We test our proposed form by comparison with existing Monte Carlo data for
the N = 4 case, which is of interest in studies of the QCD phase transition and
for which the Goldstone-mode effects are quite pronounced. We find that the
description of the numerical equation of state is indeed improved with respect
to other fitting forms. In all cases considered we determine the coefficients
nonperturbatively, from fits to the data. As a consequence, we are able to obtain
a very precise characterization of the pseudo-critical line for the model.

PACS numbers: 75.10.Hk, 64.60.Cn, 12.38.Lg

1. Introduction

The O(N) (or, more specifically, the N-vector) spin models correspond to a generalization of
the Ising model to the case of the continuous symmetry of rotation. The spin variables Si are
taken as vectors on a sphere of unit radius in an N-dimensional space. We consider N � 2.
The Hamiltonian is defined in terms of the scalar product of nearest-neighbour spins on a
three-dimensional square lattice as

βH = −J
∑
〈i,j〉

Si · Sj − H ·
∑

i

Si , (1)

where J > 0 represents the ferromagnetic coupling and H is the external magnetic field.
These models are of general interest for the statistical mechanics of phase transitions [1].

The N = 2 case (also known as the XY model) describes the superfluid transition in liquid
helium and the N = 3 case corresponds to the classical version of the Heisenberg model
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for ferromagnets1. Moreover, it is believed that the N = 4 case describes the chiral phase
transition in finite-temperature QCD with two degenerate light quark flavours, which makes
this class of models interesting to high-energy physics as well2. In this case, the magnetization
and the magnetic field of the spin model correspond respectively to the chiral condensate and
to the quark mass for the QCD analogue of the transition [2–4].

The O(N) symmetry is exact in the Hamiltonian for H = 0, just like the reflection
symmetry for the Ising model. The main difference with respect to the Ising case is the
possibility of configurations where the spins are locally aligned but for long distances this
alignment is lost, yielding a null average for the magnetization. Such configurations—
called spin waves—possess arbitrarily low energy and tend to destroy the order of the system
even at low temperatures. In fact, as opposed to the Ising model, the O(N) models do
not display a phase transition with spontaneous magnetization3 in d = 2 [5]. In d = 3 a
phase transition occurs, with the presence of spontaneous magnetization below the critical
temperature. The breaking of the (continuous) rotational symmetry at low temperatures,
signalled by the spontaneous magnetization, is associated with Goldstone modes, the spin
waves. These modes cause the divergence of the zero-field susceptibility not only at the
critical temperature, but for the entire low-temperature phase [1, 6]. Note that the magnetic
field defines a privileged direction in spin space and the magnetization M is the expectation
value of the spin component along H. There are thus N − 1 massless Goldstone modes,
corresponding to the N − 1 transverse spin components.

Spin models in the O(N) class have been extensively studied using analytic and numerical
methods (see [7] for a recent review). In particular, the nonperturbative study by Monte Carlo
simulations is very efficient for these models due to the Swendsen–Wang cluster algorithms
[8], which can be applied to the continuous-spin case by means of the embedding technique
introduced by Wolff [9]. This study is important to test the perturbative predictions and to
investigate cases for which these predictions are not available, or cannot be done with great
accuracy. These problems include properties of the models in the presence of magnetic field
and the direct calculation of long-distance observables such as the correlation length. For
example, the predicted singular behaviour of the longitudinal susceptibility for vanishing
H—mentioned above and induced by Goldstone modes at low temperatures—was directly
observed in Monte Carlo simulations of the cases N = 2, 4, 6 respectively in [10–12].

Here we consider the determination of the magnetic equation of state, which gives the
relation between applied field, temperature and magnetization for the system. The equation of
state has been determined perturbatively for general N by ε-expansions (see [1, chapter 29] and
references therein) and for the cases N = 2, 3, 4 by matching a high-temperature expansion
(with coefficients obtained from perturbation theory) to a parametric form incorporating the
leading Goldstone-mode behaviour [7, 13]. Of course it is interesting to compare these
expressions to Monte Carlo data for the equation of state. One can also test the various forms
used in the perturbative expansions (or new proposed forms) by fitting them to the Monte
Carlo results and obtaining nonperturbative coefficients. This has been done (see, e.g., [11])
using an interpolation of the low-temperature (Goldstone-mode) form derived in [14] with a
high-temperature form determined by analyticity conditions. This method has the advantage
of a clear low-temperature form, with several orders in the Goldstone-mode expansion, but
has the disadvantage of needing an interpolation with the high-temperature form.

1 The N = 0 and N = 1 (the Ising model) cases, not considered here, correspond respectively to models for the
statistical properties of long polymers and for the liquid–vapour transition in several fluid systems.
2 Two-dimensional O(N) models are also of indirect interest in quantum field theories, as toy models for
asymptotically free gauge theories.
3 For the case N = 2 there is a phase transition of the Kosterlitz–Thouless type, without spontaneous magnetization.
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In this paper we carry out fits using instead a variant of Josephson’s parametrization
[1, 15], a polynomial parametric representation for the equation of state. The resulting
representation is valid above and below the critical temperature and automatically satisfies the
analyticity conditions mentioned above. In addition to the leading (multiplicative) Goldstone-
mode contribution, we consider explicitly the higher-order terms, which are important in the
low-temperature region. Our proposed form contains two sets of coefficients, which will be
separately more relevant for the description of the high- or low-temperature regimes. We
argue that the use of this double set of coefficients enables a better characterization of the two
regimes, leading to better fits in the comparison with numerical data. This claim is verified by
an application to the N = 4 case, for which the Goldstone-mode effects are fairly high, using
the data reported in [11]. As mentioned above, this case is of interest for comparison with
data from numerical simulations of the phase transition in two-flavour QCD. In particular,
the prediction of universal behaviour in the O(4) class has been confirmed for lattice-QCD
data in the Wilson-fermion case [16], but not for the staggered-fermion formulation, which is
believed to be the appropriate formulation for studies of the chiral region. (At the same time,
some recent numerical studies suggest that the transition may be of first order [17].) We plan
to extend our analysis to the N = 2 case, for which we are generating new data [18].

The paper is organized as follows. In section 2 we describe the usual parametric
representation for the equation of state, as well as our proposed form. In sections 3 and
4 we consider the determination of important universal properties that can be obtained from
the equation of state: some critical amplitude ratios and the characterization of the pseudo-
critical line (respectively in sections 3 and 4). Finally, in sections 5 and 6 we present our
results and conclusions.

2. Scaling equation of state

The magnetic scaling equation of state is given [1, chapter 29] by

h = Mδf (t/M1/β), (2)

where t and h are the reduced temperature t = (T −Tc)/T0 and magnetic field h = H/H0. We
fix the normalization constants T0 and H0 by requiring unit critical amplitudes in the behaviour
of the magnetization along the coexistence line (given by t → 0−, h = 0) and along the critical
isotherm (given by h → 0, t = 0), corresponding respectively to M = (−t)β and M = h1/δ .

The equation of state can also be written as

y = f (x), (3)

where

y ≡ h/Mδ, x ≡ t/M1/β . (4)

Note that the coexistence line and the critical isotherm are given respectively by x = −1 and
x = 0. The corresponding normalization conditions are thus

f (0) = 1, f (−1) = 0. (5)

For large values of x (i.e. in the high-temperature region of the phase diagram) the
behaviour of f (x) is described by Griffiths’s analyticity condition [1]

f (x) =
∞∑

n=1

anx
γ−2(n−1)β . (6)

As said in the introduction, at low temperatures there appear divergences in the zero-field
magnetic susceptibility, due to transverse fluctuations from the massless Goldstone modes
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[1, 6, 19–21]. To leading order the divergence in the longitudinal susceptibility is proportional
to h−1/2 and the equation of state has the leading behaviour

f (x) = y ∝ (1 + x)2 (7)

for x → −1. We note that the Goldstone-mode divergences cancel out and the equation of state
is divergence free. This is seen order by order in the ε-expansion [22] and for fixed-dimension
perturbation theory [23]. This is also observed nonperturbatively in the Monte Carlo data
(see, e.g., [11]). The corrections to the leading behaviour are incorporated explicitly in the
expression proposed by Wallace and Zia [14], which is inferred from the ε-expansion for the
equation of state deduced in [22]. For d = 3 the expression corresponds to an expansion in
powers of y1/2

x1(y) + 1 = (c̃1 + d̃3)y + c̃2y
1/2 + d̃2y

3/2 + · · · . (8)

This form describes well the Monte Carlo data from the low-temperature region until around the
critical temperature. The coefficient associated with the H−1/2 divergence of the susceptibility
for H → 0 is c̃2. Note that the expression of c̃2 derived in [14] increases with N, i.e. models
with larger N should display stronger Goldstone-mode effects.

In [10–12] the Monte Carlo data for the equation of state have been fitted to the expression

x(y) = x1(y)
yn

0

yn
0 + yn

+ x2(y)
yn

yn
0 + yn

, (9)

where x1(y) is given in equation (8) above and

x2(y) = ay1/γ + by(1−2β)/γ (10)

corresponds to the first two terms of equation (6). (The parameters y0 and n are chosen to
ensure a good interpolation.) This interpolation of low- and high-temperature behaviours
describes well the data, but of course it would be nicer to have a form valid in both regions,
such as the parametric form introduced in [15]. This type of form is described in the next
section. We then comment on the previous use of this parametrization and propose a new
variant that is especially well suited for fits.

2.1. Parametric representation

Let us consider the polynomial parametric representation introduced in [15], in which one
writes M, t and H in terms of the variables R and θ (see, e.g., [1, 7])

M = m0R
βm(θ) (11)

t = R(1 − θ2) (12)

H = h0R
βδh(θ). (13)

Here m(θ) and h(θ) are odd functions4 of θ , regular at θ = 0 and θ = 1. This ensures that
Griffiths’s analyticity conditions are satisfied. The coexistence line is given by θ0, the smallest
positive zero of h(θ). (From equation (12) it is clear that θ0 must be greater than 1.) Without
loss of generality, we may take m(θ) = θ . The equation of state then becomes

x = 1 − θ2

θ2
0 − 1

(
θ0

θ

)1/β

, (14)

f (x) = θ−δ h(θ)

h(1)
. (15)

4 The function h(θ) should not be confused with h, the normalized magnetic field introduced in section 2.
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θ0

θ

0
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inf.

1

x
−1

Figure 1. Schematic representation of the relation between x and θ . From left to right, the
ticks correspond respectively to the coexistence line, the critical point and the high-temperature
(zero-field) limit.

The relation between x and θ is shown schematically in figure 1 together with the respective
ranges considered. Note that we must have θ2

0 < 1/(1 − 2β) for the above mapping to be
invertible [25]. For the O(4) case β ∼ 0.4 and we have roughly θ2

0 < 5.
With the parametrization (11)–(13), the singular part of the free energy Fs can be written

as

Fs = h0m0R
2−αg(θ), (16)

where the function g(θ) is the solution of the first-order differential equation

(1 − θ2)g′(θ) + 2(2 − α)θg(θ) = [(1 − θ2)m′(θ) + 2βθm(θ)]h(θ) (17)

that is regular at θ = 1 [24]. (This follows from the relation H = ∂Fs/∂M , where the
derivative is taken at fixed t.)

We note that the parametrization above was first used in perturbative studies of the
equation of state for the Ising model [25]. We discuss below its application to the N-vector
(Goldstone-mode) case.

In accordance with equation (7) the leading behaviour for θ → θ0 must be

h(θ) → (θ0 − θ)2 for θ → θ0. (18)

This combined with the requirement that h(θ) be an expansion in odd powers of θ suggests
the general form

h(θ) = θ
(
1 − θ2

/
θ2

0

)2

(
1 +

n∑
i=1

ciθ
2i

)
. (19)

This form is used in [7, 13], in their ‘scheme B’. They also define another scheme with a
similar expression for m(θ). In both cases the differential equation becomes

(1 − θ2)g′(θ) + 2(2 − α)θg(θ) = θ

3+n∑
i=0

aiθ
2i , (20)

with coefficients ai depending on the exponent β, the root θ0, the coefficients ci and on the
scheme considered. One can easily check that the solution of the differential equation that is
regular at θ = 1 is given by

g(θ) = −
3+n∑
i=0

i∑
k=0

ai

2

i!

(i − k)!

θ2(i−k)(1 − θ2)k

(α − 2) . . . (α − 2 + k)
. (21)

Clearly, this solution is a function of the values of θ0 and of the parameters ci, i = 1, . . . , n.
In [7, 13] the authors have considered the cases n = 1, 2, with parameters θ0, ci obtained from
perturbation theory. We comment on their results in section 5.2.

In the next subsection we introduce a more specific parametric expression for h(θ), as a
combined expansion around θ = 0 and around θ = θ0, in order to isolate the two regions of
the phase diagram.
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2.2. Improved parametric form

We consider here a variant of the parametric function h(θ) above

h(θ) = θ

(
1 − θ2

θ2
0

)2
(

1 +
n∑

i=1

ciθ
2i

) 1 +
m∑

j=1

dj

(
1 − θ2

θ2
0

)j
/ 1 +

m∑
j=1

dj

 . (22)

For consistency, the expression is normalized so that the contribution from the dj is equal to
1 at θ = 0. This normalization factor does not affect the equation of state, since h(θ) enters
in f (x) only as a ratio. Let us note that this is still an odd function of θ and is equivalent
(as an expansion in θ ) to equation (19) with a rearrangement of terms. In particular, we may
compare the series using only terms with ci coefficients (i.e. with all dj = 0) with that using
only dj coefficients. The relation between the two cases is given by

ci ⇐⇒ (−1)i
∑m

j=i

(
j

i

)
dj

θ2i
0

(
1 +

∑m
j=1dj

) . (23)

Thus, a single coefficient ci corresponds to a sum of dj . Conversely, if we considered an
expansion around θ ≈ θ0 each dj would correspond to a sum of ci . Since the roles of the terms
of the two series are different, considering both series may be important for truncated sums,
such as those we use for the fits. We note that the fact that the two sets of parameters will play
different roles can be expected intuitively—as discussed in the remainder of this section—but
will also be verified explicitly in the fits presented in section 5.1.

The consideration of two types of coefficients (ci and dj ) is done for gaining better control
over the description of the two distinct regions of the phase space, the low- and high-x regions.
In fact, although the two sets of coefficients give rise to a similar expansion in powers of θ , the
determination of the single coefficients (by fits to the numerical data) is more stable when each
of the two regions is separately associated with a set of coefficients. More precisely, since we
write the series as a product of two sums of terms corresponding respectively to an expansion
around the high-x region (θ ≈ 0, coefficients ci) and the low-x region (θ ≈ θ0, coefficients
dj ), we can expect fits of the data for each of these two regions to be more sensitive to the
corresponding set of coefficients, since the other set’s main contribution will be a constant.
An indication of this property can be seen from a ‘quick’ expansion of the parametric form in
powers of ε ≈ 0 for the two regions

h(ε) ≈ ε

(
1 − 2ε2

θ2
0

)
(1 + c1ε

2)

1 +
m∑

j=1

dj

(
1 − jε2

θ2
0

)/ 1 +
m∑

j=1

dj

 (24)

h(θ0 − ε) ≈ 4ε2

θ0

(
1 − 2ε

θ0

) [
1 +

n∑
i=1

ciθ
2i
0

(
1 − 2iε

θ0

)] (
1 + d12ε

/
θ2

0

)
1 +

∑m
j=1dj

. (25)

Note that we show only the leading order from each multiplicative contribution. It is interesting
that the correction to the leading behaviour is O(ε2) in the first case and O(ε) in the second.

To be more precise, we can associate the various ci, dj coefficients with the coefficients
in the separate expressions for the low- and high-x regimes used in [11], respectively
equations (8) and (10) above. For the high-x behaviour we expand f (x) around θ → 0
(corresponding to large x). We start by writing θ as a function of x and inverting equation (14)
consistently in powers of θ (correspondingly in powers of x−1/β ). We then get

m(θ) = θ = (Ax)−β [1 − β(Ax)−2β + O(x−4β)] (26)
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h(θ) = (Ax)−β[1 + B(Ax)−2β + O(x−4β)] (27)

where

A ≡ (
θ2

0 − 1
)
θ

−1/β

0 (28)

B ≡ c1 − 2

θ2
0

− β − 1

θ2
0

∑
j jdj

1 +
∑

j dj

. (29)

The equation of state then becomes

y = (Ax)γ

h(1)
[1 + (βδ + B)(Ax)−2β + O(x−4β)]. (30)

This expression is of the form (6) and can be inverted and compared to equation (10), giving

a = 1

A
[h(1)]1/γ (31)

b = −a1−2β

γ
(βδ + B) . (32)

Note that the leading coefficient a contains θ0 and sums of the coefficients ci and dj , whereas
the expression for the next orders will contain isolated contributions from the ci (e.g. the
coefficient c1 in the expression for b) but not from the dj , which appear always as a sum.

Analogously, for the low-x region we expand the expressions of θ, h(θ) around θ → θ0

(corresponding to x → −1) and substitute the results into the expression for f (x). Defining

θ = θ0(1 − ε) (33)

we write x as a function of ε, invert this expression to get ε(x) and then obtain h(θ) in terms
of x, as done above for the large-x case. The expressions are

ε =
(

1 + x

A′

) [
1 − B ′

A′

(
1 + x

A′

)
+

(
2B ′2

A′2 − C

A′

) (
1 + x

A′

)2

+ · · ·
]

(34)

h(θ) = D

(
1 + x

A′

)2 [
1 +

(
E − 2B ′

A′

) (
1 + x

A′

)
+

(
F − 3B ′E + 2C

A′ +
5B ′2

A′2

) (
1 + x

A′

)2

+ · · ·
]

(35)

with

A′ ≡ 2θ2
0

θ2
0 − 1

− 1

β
(36)

B ′ ≡ − θ2
0

θ2
0 − 1

(
1 − 2

β

)
− 1

2β

(
1

β
+ 1

)
(37)

C ≡ − 1

6β

(
1

β
+ 1

) (
1

β
+ 2

)
+

θ2
0

θ2
0 − 1

1

β2
(38)

D ≡ 4θ0

(
1 +

∑
i

ciθ
2i
0

)/1 +
∑

j

dj

 (39)
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E ≡ 2d1 − 2 −
∑

i 2iciθ
2i
0

1 +
∑

i ciθ
2i
0

(40)

F ≡ 4d2 − 5d1 +
5

4
+

4(1 − d1)
∑

i iciθ
2i
0

1 +
∑

i ciθ
2i
0

+

∑
i i(2i − 1)ciθ

2i
0

1 +
∑

i ciθ
2i
0

. (41)

The equation of state then becomes

y = Dθ−δ
0

h(1)

(
1 + x

A′

)2
[

1 +

(
E − 2B ′

A′ + δ

) (
1 + x

A′

)
+ G

(
1 + x

A′

)2

+ · · ·
]

, (42)

where

G ≡ δ(δ + 1)

2
+ δE + F − 3δB ′ + 3B ′E + 2C

A′ +
5B ′2

A′2 . (43)

This form may be inverted to give an expression of x as a series of powers of y1/2 as in
equation (8). We obtain the coefficients

c̃2 = A′
[
θδ

0 h(1)

D

]1/2

(44)

c̃1 + d̃3 = − c̃ 2
2

2A′

(
E − 2B ′

A′ + δ

)
(45)

d̃2 = c̃ 3
2

2A′2

[
5

4

(
E − 2B ′

A′ + δ

)2

− G

]
. (46)

We see that in this case it is the dj coefficients that appear as single contributions, whereas the
ci appear always as sums.

Thus, the qualitative feature observed in equations (24) and (25) is confirmed by a more
careful expansion, i.e. the c are more relevant for the high-x region and vice-versa. This will
also be seen directly from the fits in section 5.1. All calculations above were checked using
Mathematica.

3. Amplitude ratios

Just like other critical properties of statistical systems (e.g. critical exponents), certain ratios
of critical amplitudes are universal [26]. The amplitude ratios are taken as dimensionless
combinations of critical amplitudes above and below Tc for various quantities. For example,
for the singular part of the specific heat one has

CH = A± |t |−α , t → ±0, (47)

where t ∝ (T − Tc). The ratio A+/A− is then universal. Similarly, by considering the
behaviours of

• the susceptibility along the critical isochore (t > 0,H = 0)

χ = C+t−γ (48)

• the magnetization along the critical isotherm (t = 0,H �= 0)

M = D−1/δ
c H 1/δ (49)

• the magnetization on the coexistence line (t < 0,H = 0)

M = B(−t)β (50)
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one may construct the universal ratios

Rc = αA+C+/B2, (51)

Rχ = C+DcB
δ−1. (52)

These and other universal ratios may be obtained directly from Monte Carlo simulations (as
done e.g. in [27]) or indirectly from the equation of state. In the case of the Josephson
parametrization discussed above, the universal amplitude ratios of quantities defined at zero
momentum are given in terms of g(θ) by [25]

A+/A− = (
θ2

0 − 1
)2−α g(0)

g(θ0)
, (53)

Rc = −α(1 − α)(2 − α)

(
θ2

0 − 1
)2β

g(0)

θ2
0 h′(0)

, (54)

Rχ = θδ−1
0 h(1)(

θ2
0 − 1

)γ
h′(0)

. (55)

Note that in order to evaluate the function g(θ) one has to solve the differential equation (17),
i.e. determine solution (21).

Our results for the above ratios are reported in section 5.3.

4. The pseudo-critical line

Another important property that can be extracted from the equation of state is the
characterization of the so-called pseudo-critical line, defined by the points where the
susceptibility χ shows a (finite) peak for H �= 0. This corresponds to the rounding of
the divergence observed at the critical point, i.e. for H = 0 and T = Tc. More precisely, one
looks for a peak in the scaling function of the susceptibility, given by [29]

M = h1/δfM(z) ⇒ χ = ∂M

∂H
= h1/δ−1

H0
fχ(z), (56)

where

z ≡ t/h1/βδ. (57)

Clearly, at each fixed h the peak in χ is given by tp = zph1/βδ , and we have

Mp = h1/δfM(zp), H0χp = h1/δ−1fχ(zp). (58)

Thus, the behaviour along the pseudo-critical line is determined by the universal constants
zp, fM(zp), fχ(zp). Determining this line is important for systems where a study at H = 0
is not possible (and consequently the critical value Tc is not known with accuracy), such as
for the chiral transition of QCD at finite temperature. In fact, knowledge of these universal
constants allows an unambiguous normalization of QCD data (using the observed scaling
along the pseudo-critical line), as done in [28].

The pseudo-critical line has been studied for O(2) and O(4) models in [29, 30]. For the
N = 4 case, it is found that the susceptibility peaks are given by zp = 1.33(5). Since this
value is close to the interpolating point of the equation of state in [11], it is very important to
work with the smooth parametrization considered here, especially when using the derivative
of fM(z) as in equation (59) below.
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The expression for fχ(z) can be easily obtained from the equation of state, given by fM(z)

or f (x). Using the original parametrization we obtain [29]

fχ(z) = 1

δ

[
fM(z) − z

β
f ′

M(z)

]
= β[f (x)]1−1/δ

βδf (x) − xf ′(x)
. (59)

(Note that z = x[f (x)]−1/βδ .) In terms of the parametric representation this gives

fχ(θ) =
[
h(θ)

h(1)

]−1/δ
(2βθ2 + 1 − θ2)h(θ)

2βδθh(θ) + (1 − θ2)h′(θ)
(60)

z(θ) =
[
h(θ)

h(1)

]−1/βδ
θ

1/β

0 (1 − θ2)

θ2
0 − 1

. (61)

Our results for fχ(z) and the determination of zp are shown in section 5.3.

5. Results

The fits have been done using a conjugate-gradient minimization [31] of χ2—without
considering the gradient of the function f (θ)—with a numerical inversion of equation (14)
in order to find θ for any given value of x. For the critical exponents we used ν = 0.749(2)

[32] and δ = 4.824(9) [33], implying the values β = 0.386(1), γ = 1.476(5) and the upper
bound θ2

0 � 4.38(5). We refer to these values as the first set of exponents. We note that the
corresponding exponent δ from [32], 4.789(6), has slightly smaller error bars. However, we
choose to use that in [33] because it is obtained directly from (infinite-volume) simulations at
nonzero magnetic field. These two exponents are not in agreement within error bars. We will
also present below for comparison a few quantities obtained using the exponent δ from [32].
We refer to the resulting values as the second set of critical exponents.

The data for the magnetization are taken from [11]. In addition to the statistical errors, we
have included errors due to the critical exponents, the critical temperature and the normalization
constants H0 and T0. These constants have been rederived using the first set of exponents
above (with errors), yielding

H0 = 4.85(2), T0 = 1.055(5). (62)

The errors reported in parentheses in all the tables below are Monte Carlo (MC) errors,
obtained with 2000 MC iterations. In particular, in section 5.1 we not only vary the y variable
but also consider the uncertainties in the exponents γ and δ appearing in the fitting function
(i.e. in equations (14) and (15)). The same is true for the errors reported in section 5.2. In
section 5.3 the errors comprise the error bars in the input parameters and also the errors in the
critical exponents.

5.1. Fits

As a first step, we tried to fit the data separately in the high- and low-x regimes using only ci

or only dj parameters, in order to confirm that the ci are more important at high x and the dj at
low x, as suggested in section 2.2. As one can see from tables 1 and 2, this is indeed the case.
At high x the fits using ci parameters work better than the fits using dj parameters, as can be
seen in the case with one parameter plus θ2

0 . When using two parameters plus θ2
0 the values

of χ2/d.o.f. obtained in the two cases coincide, but in the case with d1 and d2 one obtains the
unphysical value θ2

0 ≈ 7. Moreover, if one tries to do a fit using θ2
0 , c1, c2 and d1 the fit is

not better than that reported in the third row of table 1 and the value of d1 is very close to 0.
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Table 1. Fits in the high-temperature regime (using x � 0). The values of χ2/d.o.f. should be
taken only as relative measures of the goodness of the fits. The number of d.o.f. is 33.

θ2
0 c1 c2 χ2/d.o.f.

2.33(3) 0.50
2.01(8) 0.16(6) 0.43
1.67(5) 0.22(6) 0.18(4) 0.44

θ2
0 d1 d2 χ2/d.o.f.

3.61(4) 438(1) 0.59
7(2) −1.4(2) −0.075(1) 0.44

Table 2. Fits in the low-temperature regime (using x � 0). The values of χ2/d.o.f. should be
taken only as relative measures of the goodness of the fits. The number of d.o.f. is 37.

θ2
0 c1 c2 χ2/d.o.f.

1.905(7) 40.1
1.09(2) −1.18(4) 27.3
1.07(1) 3.3(1) −5.1(1) 28.1

θ2
0 d1 d2 χ2/d.o.f.

3.85(4) −4.0(2) 20.2
2.69(2) 154(4) −111(2) 18.7

Table 3. Fits using only ci terms and the whole set of data. The values of χ2/d.o.f. should be
taken only as relative measures of the goodness of the fits. The number of d.o.f. is 69.

θ2
0 c1 c2 c3 c4 χ2/d.o.f.

1.955(7) 31.5
1.614(7) 0.58(3) 19.6
1.392(5) −0.06(1) 0.80(3) 18.1
1.247(6) 1.6(2) −2.8(3) 2.7(2) 17.6
1.170(3) −0.7(1) 6.8(4) −11.6(8) 7.2(5) 17.4

In the low-x region the fits using dj parameters work much better than the corresponding fits
using ci parameters. Again, if one tries a fit using θ2

0 , c1, d1 and d2 the result is not better than
that reported in the last row of table 2. Thus, we see clearly that the coefficients ci and dj are
more relevant respectively at high and low x, as suggested in section 2.2.

As a second step, we checked that the fit of all the data using only the parameters ci does
not work very well (see table 3). In particular, even with four parameters ci one cannot get
a large improvement in the value of χ2/d.o.f., compared to the case with only the parameter
c1. The situation is slightly better when considering only dj parameters (see table 4). Note,
however, that we have only a few data points with very large x and that the low-x expression
used in [11] describes well the data up to x ≈ 2.

Finally, fits of all the data with both ci and dj parameters (see table 5) work very well,
giving a value of χ2/d.o.f. about a factor two smaller than the best result obtained in table 3
(see last row). In particular, we find it interesting that for the three fits considered we get
(within errors) the same value for θ2

0 . By averaging over the three results we find

θ2
0 = 2.16(2). (63)
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Figure 2. Plot of the data together with the fitting curve for the case with coefficients c1, c2 and
d1, d2 using the first set of exponents. No errors are shown for the curve. Error bars on the data
are one standard deviation.

Table 4. Fits using only dj terms and the whole set of data. The values of χ2/d.o.f. should be
taken only as relative measures of the goodness of the fits. The number of d.o.f. is 69.

θ2
0 d1 d2 d3 d4 χ2/d.o.f.

3.99(4) −3.5(1) 12.0
3.22(4) −9.2(9) 3.9(5) 10.2
2.63(2) −69(3) 83(2) −36(1) 10.0
2.73(2) −53(3) 42(2) 5.9(2) −15.0(9) 10.2

Table 5. Fits using five parameters and the whole set of data. The number of coefficients ci and dj

used in each case is indicated in the first column. The values of χ2/d.o.f. should be taken only as
relative measures of the goodness of the fits. Here we use the first set of critical exponents. (The
number of d.o.f. is 69.)

fit (ci + dj ) θ2
0 c1 c2 c3 d1 χ2/d.o.f.

3+1 2.16(3) 0.80(6) −0.39(7) 0.58(4) 33(6) 9.8
θ2

0 c1 c2 d1 d2 χ2/d.o.f.
2+2 2.17(4) 0.9(1) −0.62(7) −1.56(4) 1.15(5) 9.8

θ2
0 c1 d1 d2 d3 χ2/d.o.f.

1+3 2.16(2) 1.4(1) 31.2(9) −50(1) 38(2) 9.8

In figure 2 we show a plot of the data together with the curve corresponding to the case on
the second row of table 5. We have also tried fits with six parameters, without significant
improvement in the value of χ2/d.o.f.

Let us mention that, while one should ideally have χ2/d.o.f. of order 1 for a proposed
model form to fit the data, it is extremely difficult to be in such a situation when simulating
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Table 6. Fits using five parameters and the whole set of data. The number of coefficients ci and
dj used in each case is indicated in the first column. The values of χ2/d.o.f. should be taken only
as relative measures of the goodness of the fits. Here we use the second set of critical exponents.
(The number of d.o.f. is 69.)

fit (ci + dj ) θ2
0 c1 c2 c3 c4 χ2/d.o.f.

4+0 1.137(2) −1.0(2) 8.5(6) −14.6(9) 9.0(5) 58.1
θ2

0 c1 c2 c3 d1 χ2/d.o.f.
3+1 2.054(7) 1.17(6) −1.05(6) 1.11(4) 510(30) 27.0

θ2
0 c1 c2 d1 d2 χ2/d.o.f.

2+2 2.19(3) 1.2(1) −0.80(6) −1.74(3) 1.34(4) 26.6
θ2

0 c1 d1 d2 d3 χ2/d.o.f.
1+3 2.22(1) 0.67(1) 630(20) −920(20) 560(10) 29.0

θ2
0 d1 d2 d3 d4 χ2/d.o.f.

0+4 2.13(1) −71(2) 180(4) −193(3) 75(2) 26.7

non-trivial physical systems. In fact, the model is seldom exact5 and a high value of χ2/d.o.f.
may be found even if the data are well analysed and free from systematic effects. Of course
a more exact parametrization will show a smaller χ2/d.o.f. for the same data, although that
value too may be higher than 1. In that sense one should interpret our values of χ2/d.o.f. as
a ‘relative measure’ of the goodness of the fits. Indeed, we use the χ2/d.o.f. to compare the
various fitting forms and select the best ones.

The relatively high values of χ2/d.o.f. may also be related to remaining systematic
effects in the data. This is especially true in the low-temperature regime, where the finite-size
effects are very strong due to the effect of Goldstone-mode-induced singularities. It would
be interesting to test our parametrization using the higher-precision data recently produced
in [33]. In any case, if we use the second set of exponents above (i.e. with δ from [32]) the
values of χ2/d.o.f. are significantly worse, as can be seen in table 6. We note that, in order
to consider this second set of exponents, we have re-evaluated the normalization constants H0

and T0, the values of x and y and the data errors for this case.

5.2. Comparison with other parametrizations

We now compare our results with previous expressions for the O(4) equation of state. In [13],
the scheme B considered by the authors corresponds to all dj = 0 and only θ0, c1 nonzero.
Their values for these coefficients are

θ2
0 = 2.4(2), c1 = 0.065(30). (64)

Note that their value of θ2
0 is consistent with ours within error bars. Using these coefficients as

a ‘fit’ of the data (considering the first set of critical exponents above), one obtains a χ2/d.o.f.
of 268. We can also use our second set of data to evaluate χ2/d.o.f., but this yields the
value 688.

We also consider the interpolated parametrization introduced in [11], presented in
equations (8)–(10) above. Using the first set of data, we obtain the high-x coefficients

a = 1.07(1), b = −0.95(3) (65)

5 In our case, for example, the proposed form might be exact only in the limit of an infinite series of c or d coefficients.
Since only a few parameters can be used for the fits, it is reasonable that one may accomplish a better job by using
both types of coefficients.
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Table 7. Results for the universal amplitude ratios using the fits reported in table 5.

fit (ci + dj ) A+/A− Rc Rχ

3+1 1.7(2) 0.26(2) 1.11(6)
2+2 1.8(5) 0.26(2) 1.1(1)
1+3 1.8(4) 0.26(2) 1.1(1)

Table 8. Results for the universal amplitude ratios using fits reported in table 6.

fit (ci + dj ) A+/A− Rc Rχ

3+1 1.6(1) 0.25(1) 1.09(5)
2+2 1.6(1) 0.27(2) 1.1(1)
1+3 1.9(3) 0.22(1) 1.02(5)

with χ2/d.o.f. = 0.52 (cut at x = 1.5). At low x we get

c̃1 + d̃3 = 0.19(1), c̃2 = 0.746(3), d̃2 = 0.061(8) (66)

with χ2/d.o.f. = 25.5. Note that the above coefficients are only in partial agreement with
the values in [11, 33], mostly due to the slightly different critical exponents considered. We
then use these coefficients for the interpolated expression in equation (9), setting (as in [11])
y0 = 10, n = 3. The resulting 5-parameter fit of the data has χ2/d.o.f. = 26.2.

5.3. Universal quantities

As discussed in sections 3 and 4, we use the fits obtained above to evaluate several interesting
universal quantities, such as critical amplitude ratios and the characterization of the pseudo-
critical line in the phase diagram.

In table 7 we show the results obtained for the ratios A+/A−, Rc, Rχ using our preferred
fits (reported in table 5). The three fits give consistent results within error bars. Averaging
over the three cases yields

A+/A− = 1.8(2), Rc = 0.26(1), Rχ = 1.10(5). (67)

These values are in agreement with those reported in [13, table 3]. (Note, however, that
our values take into account the errors due to the uncertainty in the critical exponents.) We
also show, in table 8, the same quantities using the fits for our second set of data (from
table 6). These results show a little more fluctuation, but are essentially in agreement with
those in equation (67) above. Note that the ratio Rχ can also be evaluated directly [10]
from the coefficient a in the interpolated form, given in equation (65). In this case we get
Rχ = aγ = 1.105(15), in agreement with our result above and with [33].

We now turn to the numerical characterization of the pseudo-critical line (see section 4).
Using equations (60) and (61), we draw the parametric plot of the scaling function for the
susceptibility versus z (see figure 3). The peak corresponds to the pseudo-critical line and can
be determined numerically from the two equations by varying θ . The peak coordinates thus
obtained are reported in table 9, where we used our preferred fits. The values are consistent
within errors, yielding

θp = 0.587(2), zp = 1.29(1), fχ (zp) = 0.341(1). (68)

The results are in agreement with previous determinations of zp and fχ(zp), made in [29] and
[13], but our error for zp is much smaller. In table 10 we present these quantities in the case
of our second set of data. Again, the determinations are in agreement.
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Figure 3. Plot of the scaling function of the susceptibility fχ (z) from equations (60) and (61),
using the fit in the second row of table 5.

Table 9. Results for θp, zp and fχ (z) using the fits reported in table 5.

fit (ci + dj ) θp zp fχ (zp)

3+1 0.580(2) 1.33(1) 0.340(2)
2+2 0.589(4) 1.28(3) 0.343(3)
1+3 0.592(3) 1.27(1) 0.339(2)

Table 10. Results for θp, zp and fχ (z) using fits reported in table 6.

fit (ci + dj ) θp zp fχ (zp)

3+1 0.605(2) 1.25(1) 0.345(2)
2+2 0.604(3) 1.21(3) 0.344(2)
1+3 0.557(3) 1.33(2) 0.3553(7)

6. Conclusions

We have introduced an improved parametric form for the description of the equation of state
of 3d O(N) models. This form is based on the parametrization used perturbatively in [25] for
the Ising model, but takes into account terms associated with the effects of Goldstone-mode
fluctuations. Such effects are present in O(N) models along the coexistence line, i.e. at
low temperatures and small magnetic field (or equivalently, at low values of the variable x).
These new terms are included by means of the dj coefficients, associated with an expansion
around the coexistence line. (The dj are considered in addition to the usual ci coefficients,
related to the high-temperature/high-x behaviour.) We show that the new parametric form
indeed provides a better fit to the numerical data as compared to previous parametrizations.
In particular, the consideration of the dj coefficients is essential for a good description of
the Monte Carlo data in the whole range of values of x: it enables us to encode the relevant
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physical information of the high- and low-x regions into two separate sets of parameters, which
play different roles when fitting data to obtain the equation of state. In our fits, we were able
to verify clearly the different roles played by ci and dj parameters in the different regions.

As said above, our results (presented in section 5) illustrate the advantage of including the
dj coefficients in our parametrization. In particular, we see that while the series expansions
with and without d (respectively equations (19) and (22)) are mathematically equivalent, they
are not equally well suited for fits to numerical data, since the expansion with both types
of coefficients leads to more reliable results for the equation of state. This could have been
expected intuitively—as discussed in section 2.2—because the main contributions at high and
low x are respectively given by c or d (see equations (24), (25) or (26)–(46)). It can also be
observed in the fit results, as explained at the beginning of section 5.1. In fact, fits in the
high-temperature regime naturally ‘select’ coefficients of type c: if we try to improve the fit
reported in the third row of table 1 by including a coefficient of type d, the χ2/d.o.f. is slightly
worse, and the value of the new coefficient is close to zero. The same happens when trying to
include a coefficient of type c in the fit of the low-temperature region given in the fifth row of
table 2. At the same time, fits of all the data using both sets of coefficients, reported in table 5,
allow a very stable determination of the parameter θ0, with an error of an order of magnitude
smaller than in the perturbative case (see equations (63) and (64)).

We note that, in the case where all dj = 0, our parametrization is equivalent to the scheme
B discussed in [7], used perturbatively by the authors for general O(N) models. We find that
our value of θ0 is consistent with their perturbative determination for the O(4) case, presented
in [13]. However, we do not confirm their conjecture that the ci get smaller with increasing i.

We also stress that, in addition to providing a better fit to the numerical data, the expression
considered is a continuous function, needing no interpolation between the two x regions. This
is particularly useful for the determination of the pseudo-critical line, since the interpolating
form introduced in [11] is unstable precisely in this region. As a result, our determination of
zp is very precise in comparison to the previous estimates from the interpolated form and the
perturbative equation of state.
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